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A kinetic theory of steady condensation 
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Nesearch and Development Center, General Electric Company, Schenectady, N.Y. 

(Received 28 April 1969) 

This paper pertains to the steady condensation on to, or evaporation from, a 
liquid droplet suspended in a mixture of its vapour and an inert gas. The treat- 
ment is from a kinetic theory viewpoint. The Maxwell moment method is used 
with Lees’ two stream Maxwellian representations for the distribution functions, 
to obtain a closed form result valid through the whole range from free molecule to 
continuum. In the diffusion control limit the formula reduces to approximate 
results obtained by Maxwell, Fuchs and others. In  the limit where no inert gas is 
present the formula reduces to a result obtained earlier by the author. The formu- 
lae presented here for the mass and energy flux can now be used to calculate 
the growth rate of very small droplets, under a wide range of conditions. 

~~ 

1. Introduction 
The growth or dimunition of liquid droplets, by condensation and evaporation 

respectively, is of great importance in various areas of technology. The per- 
formance of supersonic nozzles, the erosion of steam turbine buckets, the effi- 
ciency of vapour-droplet separators all depend to various degrees on droplet sizes. 
The phenomenon is also of importance in droplet combustion, and liquid metal 
vapour power cycles. In  all of these cases knowledge of droplet size and growth 
rate are of considerable importance. 

The phenomenon of condensation droplet growth is a transient one. The 
moving boundary and the changing droplet temperature pose hard mathematical 
problems. In  order to reduce the difficulty one can attempt to solve the problem 
by a quasi-steady approach, i.e. solve the problem of steady condensation and 
then use this solution for the transient problem in a quasi-steady manner. In  
this paper we consider only steady condensation and evaporation. 

Let a droplet of liquid of radius r, (figure l), at a temperature TL be surrounded 
by a mixture of its vapour (subscript A )  and an inert gas (subscript B). Far from 
the droplet, let the partial pressures of the vapour and inert gas (called gas from 
now on) be p,, and p,, respectively. Let the temperature far away be T,. The 
saturation vapour pressure of the liquid, corresponding to a temperature TL and 
radius r,, is p z .  The problem is to calculate the evaporation or condensation rate 
when the ambient temperature and vapour pressure are not equal to the droplet 
temperature and the corresponding vapour pressure. 

Maxwell (1877) was the first to attempt a solution to this problem. He assumed 
that diffusion was the controlling mechanism, i.e. the amount of vapour 
evaporated or condensed depended only on its ability to diffuse outward or 
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inward. Then, if r4 is the total mass of vapour crossing the spherical surface 
of radius r ,  

where DAB is the diffusion coefficient and is the mass flux. Maxwell now 
assumed that pa, the vapour density, took the value pe, corresponding to satura- 
tion, at  the droplet surface. Then 

Among many things neglected in this analysis was the mean motion of the gas 
and vapour. If the vapour diffuses in one direction, the gas has to diffuse in the 
other direction to keep the pressure approximately constant. But, since there 
can be no net flow of the inert gas, there must be a mean motion t o  counteract 
the diffusion. Stefan (1881) took this into account and showed that 

= Go = ( 2 )  

The correction term is not significant if the vapour partial pressure is small. 

Vapour + Inert gas 

P A , ,  T m  P s m ,  T m  

FIGURE 1. The geomet,ry used for the continuum analysos. 

The assumption that the vapour pressure at the droplet surface is equal to pz 
is in general a poor one. The non-equilibrium processes occurring close to the 
surface cause rapid changes to occur in the vapour concentration. This was 
pointed out first by Langmuir (1915), and Schafer (1932) and Fuchs (1934) 
attempted to take this effect into account. They assumed (figure 1) that diffusion 
was rate controlling up to a distanoe A (of the order of the mean free path) from 
the surface, but that within this distance the transport was governed by free 
molecular kinetics. At r = ro + A  let the vapour concentration be pA1 which is 
initially unknown. Then from Fick’s law (with pAoo = 0) 

rA . 
P A  = mu’ 
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But from elementary kinetic theory, the mass flux from the droplet is given by 
a,,pg(B, TL)*/%f and the flux to the droplet is given by ~ , ~ A ~ ( R A T A , ) ~ / % T ,  
where a,  is the sticking or mass accommodation coefficient. Therefore if TAl N TL, 
the net rate of vapour mass flow from the droplet is 

Between ( 5 )  and (6) theunknown pA1 can be eliminated to give the evaporation 
rate m 

Now the distance A is normally taken to be some multiple a of the mean free 
path 1 a t  the droplet surface, i.c. A = al. 

There are two major unsatisfactory features in the above mentioned analyses. 
First, they are based on the assumption that diffusion is the rate controlling 
mechanism. Now, when the density of the inert gas is low, diffusion will give way 
to kinetic control. Diffusion based continuum theories cannot describe this 
transition to the limit where no inert gas is present. The second unsatisfactory 
feature is the ad hoe introduction of kinetic effects by a mean free path approach. 
Not only is the multiple a in the definition of A unknown, but the mean free path 1 
a t  liquid surface is itself not a clearly defined quantity. 

The limitations of the continuum analyses originate from one basic fact. The 
evaporation-condensation problem is not properly posed in a continuum formu- 
lation. The boundary conditions at the liquid surface cannot be specified in terms 
of continuum thermodynamic variables. I n  fact, the problem is really a two- 
point boundary -value problem for the molecular velocity distribution functions, 
where the complete distribution functions are known a t  infinity and half the 
distribution functions are known a t  the liquid surface. 

The purpose of the present analysis is to obtain, from a kinetic theory formula- 
tion, a solution valid through the  range from free molecule to continuum and 
capable of describing the transition from pure diffusion to pure kinetic control. 
This will be done by solving the Boltzmann equations approximately for the 
distribution functions f , ,  by the Maxwell moment method, as developed by Lees 
(1959, 1965). This technique, in spite of its recognized limitations, offers the 
most tractable approach to a problem of this degree of complexity. 

Before passing on to the present formulation, we note that Monchick & Reiss 
(1954) attempted a kinetic theory treatment of the problem. However, they used 
the Chapman-Enskog theory which is quite unsuitable for boundary-value 
problems of this type. Also, the Chapman-Enskog expansion is really in inverse 
powers of the density. Thus it will always fail to give the free molecule or nearly 
free molecule solution. The result of Monchick & Reiss suffers from precisely 
this defect. 

25-2 
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2. A kinetic theory formulation 
2.1. The governing equations and boundary conditions 

The knowledge of the molecular velocity distribution function fv(r, g, t )  consti- 
tutes the most complete knowledge of the state of a gas, above the individual 
molecular level. If we know the distribution function fu, all the macroscopic 
quantities such as density, velocity, pressure, etc., can be obtained as moments 

P”@> t )  = m v f v d S v ,  @ a )  s off,: 

etc. Here E, is the molecular velocity vector, rn is the molecular mass and the 
subscript Y refers to the particular species (no sum over u). I n  this particular 
case u takes the values A and B, where A refers to the condensable vapour and 
B t o  the inert gas. The problem then is to solve for f A  and f B  which satisfy the 
Boltzmann equations 

g .V fv=  (g) , v = A , B .  
Coll. 

(9) 

where we have left out the time dependence, since we are considering the steady 
case. (afv/&,,, are the collision integrals. 

We shall consider the boundary conditions in some detail. Far from the droplet 
the gas and vapour pressures p,, and pA,  are known; also, the temperature T, 
is the same for both vapour and gas and is known. 

From the equation of state the two number densities nu are also known. Hence 
the boundary conditions for r+ co may be written 

The situation at  the surface of the droplet is somewhat more complicated. 
One obvious boundary condition is that the net mass flux of inert gas must be 
zero 

~ B ( r  = r,,) = m, cT f B  dgE = 0. (11) s 
We now assume that the inert gas molecules striking the liquid are absorbed 

by it, and are then diffusely re-emitted with a Maxwellian distribution corre- 
sponding to the temperature TL of the liquid 

Note that nBO the number density of the re-emitted molecules is not known in 
advance. 

As for the vapour, we now have to introduce the mass accommodation or 
sticking coefficient am and the thermal accommodation coefficient aT. These 
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coefficients just manifest our uncertainty as to  the physics of the actual molecular 
processes occurring at the surface. They are defined as follows: 

where i refers to the incident stream, R to the net receding stream and L to the 
stream of molecules from the liquid. qai are the energy fluxes. Thus, when the 
receding stream of molecules is composed only of the stream emitted from the 
liquid and contains no molecules reflected from the incident beam, both a, and 
aT = 1, i.e. for diffuse re-emission the accommodation coefficients are unity. 
Now we shall assume that the liquid emits vapour molecules in a Maxwellian 
distribution corresponding to the liquid temperature TL and number density 
corresponding to the saturation value at  TL and radius ro, i.e. 

Note that this constitutes two boundary conditions, since the number density 
and temperature are specified. It is true that nz is a function of TL and the 
radius ro through the saturation vapour pressure-temperature relationship (the 
Clausius-Clapeyron equation modified by the Kelvin correction). But, as far as 
the vapour is concerned, the liquid is a black box which specifies two quantities 
nz and TL. 

In  summary, we have four boundary conditions (10) at  infinity, two boundary 
conditions (1 1) and (12) at  r = ro for the inert gas, and two boundary conditions 
(14) modified or complicated by (13) for the vapour at r = yo. In the case of 
diffuse re-emission (aT = am = 1)  the molecules from the liquid surface are made 
up entirely of the molecules emitted by it 

= = f A L  for [Ar  > O* (15) 

2.2. The Maxwell moment method 

In  § 2.1 we noted that a solution to the problem necessitated the solutions of the 
Boltzmann equations (9) for the distribution functions f A  and f B .  However, we 
are not particularly interested in distribution functions themselves. The gross 
macroscopic quantities such as mass flux and heat flux are our main concern. 
We shall therefore not attempt to solve (9) directly, but we shall solve the 
transport equation for the lower moments. In  so doing we shall be satisfying (9) 
in some average sense. Multiplying (9) by some function Q(tUi) of the molecular 
velocity components, and integrating over the velocity space, 

or 
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where AQ is the change in Q due to collisions. This is the basic transport equation 
due to Maxwell. For a pure gas, setting Q = m, mti and fimt2 leads to  the equations 
of conservation of mass, momentum and energy (AQ = 0). 

For details of the present method due to  Lees (1959, 1965) we refer to the 
original papers. I n  brief, the procedure is as follows: 

(i) Represent the distribution function f by a number of unknown functions. 
(ii) Take as many moments (17) as necessary to determine the unknown 

(iii) Satisfy the boundary conditions. 
In  choosing the form of the distribution function and the arbitrary functions 

functions. 

one is guided by the following requirements: 
(i) It should have the two-sided character essential to rarified flows. 
(ii) Its form must be such that the boundary conditions are easily satisfied. 
(iii) It should be capable of providing a smooth transition from rarified flow 

Lees’s two-stream Maxwellian is admirably suited for most purposes involving 
t o  the Navier-Stokes limit. 

simple geometries. 

2.3. Moment formulation of the droplet problem 
For a spherically symmetric geometry (refer to figure 2 a ) b )  the transport 
equation (17 )  takes the form, 

We shall assume both species to be Maxwell molecules, i.e. ones that have an 
inverse fifth power law of force between the molecules. This permits us to evaluate 
AQ without knowing the form off. Since we have two species, 

I (19) 
AQ = (AQ)An + (AQ)A4B for molecules A ,  

AQ = + (AQ)AB for molecules B. 

That is, the change in Q is due to collisions with the same species plus that 
due to collisions with the other. For Maxwell particles it can be shown (Jeans 
1954; Lees 1959) that 

(AQ),, = 0 for Q = mv, mv tui) ;my tf, 
(A&),, = . ~ v j i c  for Q = mu t v j  tvk, 1 (20) 

(AQ),, = h I i 4  [ - 4qv j  + C pVjkuvd for Q = hv t v j  E:. 
k 

The collision integrals for the gas mixture yield complicated They 
have been derived by Kolodner (1957), Weinstein (1965) and others. The details 
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FIGURE 2. (a)  Geometry for the two stream Maxwellian representation. 
(b)  The velocity space at  the point P(r, 8, $). 

for the present calculation are given in a report by the author (Shankar 1969); 
we shall not present them here. 

The two distribution functionsf, will be assumed t o  be two stream Maxwellians 
(refer to  figures 2a, b )  of the following form: 

We therefore have eight unknown functions nVl) nv2, T,, and T,,, all of which 
are functions of r only. This form permits us to have a cone of influence which 
is essential for free molecular flow. 
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With such a choice for f,(r, 5) it is easy to show that the mass density of v at r 

( 2 4  

is given by 

where (23) 

All other quantities such as radial velocity, heat flux, pressure, etc., can also 
be evaluated in terms of the unknown functions n,,, nu2, T,, and ?12. 

Having defined each distribution function by four unknown functions it is 
necessary to use four moment equations for each f,; the three conservation 
equations plus one higher moment each. Now the choice of the higher moment 
is in a sense arbitrary and the solution will, a t  least numerically, be dependent 
on the particular choice. Experience with the heat transfer problem (Lees 1965), 
which bears considerable similarity to the condensation problem, leads us to 
choose the moment corresponding to radial heat flux. Setting Q = m,,, mu c,,, m,ac,2 
and mu gUr 45; respectively, ( 1  8) yields the following eight moment equations: 

(24 u )  
d 
d,(r2Pv%) = 0, 

13“ 
lull 

= - [ - 3qur  + v u ~ u r r l +  (4Q)~3. ( 2 4 4  

These equations can now be rewritten as equations for the eight unknown 
functions. 

The boundary conditions ( lo) ,  (1 1) and (14) can also be quite simply written, 
as boundary conditions on T,,, Tu2, n,, and nu2. Thus we have eight non-linear 
first-order equations and eight boundary conditions for the unknowns XI, 
T y 2 ,  n,, and ns2. 

3. A perturbation solution 
Our main interest here is to calculate the vapourization rate for departures from 
equilibrium that are not too large. It is then natural to seek a perturbation 
solution about the equilibrium state. We first write the functions defining 
fv(r ,  g) in perturbation series of the form, 

nvl(r) = nUmP + &(r) + . . .1, (25a)  

T,,(r) = T m P  + t , l ( V )  + f .  .I, (25 b)  

nu2(r) = numP + Nu2(r) + ... I, (25 4 
q 2 ( r )  = T‘[1+tu2(r)+ .-.I. ( 2 5 4  
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Nvl, tyl, Nu, and tv2 are the dimensionless first-order perturbation quantities to be 
calculated. It is convenient to introduce the following notation : 

(26) 1 N,, = N,l(4 + NY2(r), N,- = N,lW - N,2(r), 

4, = tul(r) + t v z w ,  tu- = tul(r) - t L 2 k ) .  

In  terms of these variables the dynamic and thermodynamic gross quantities 

P7a)  

( 2 7 b )  

are to first order 
PA.) = Pym[l + 8NV+ - g x w  + ... I, 

v,(r) = '$iT [ ( ~ , - + g t , - )  + ...I, 

T,(r) = T,[l+:(t,+-Bxt,-)+ ...I, ( 2 7 c )  

( 2 7 4  p,,(r) = pvm[l + *(Nu+ - xN,- + t,, - xt,J + ... I, 

!lvvr(r) = p y m P y ( l  zn - x2)  [(&- - &&-) + ...I, (27e) 

where P, = (2nRuTm)t.  We note that the radial velocity v,, and the radial heat 
flux qVr have only first-order components, i.e. they vanish a t  equilibrium, as they 
should. Substituting the forms (27) into the moment equations (24) we obtain 
after some simplification the following eight linearized moment equations : 
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m + 2M: 10Fl - 8 2 F, + 8 G , ) ] ]  , (31 b )  ( mA PA 

where F,, G, are constants proportional to the radial velocities and 

F2 = AL-+$tA-, G, = NB-+$B-, 

ml3 MB = mA nl, = 
m,+*?2,’ mA +mI3 

A,  and A ,  are constants from the collision integral and DAB is the binary diffusion 
coefficient defined (Jeans 1954) by 

kTm m,+mB 3 1  DAB=^ A 
A B 1 ( KAB ) n A m + n B m  

Note that (28a, b)  state that the mass flux of each species is inversely pro- 
portional to the square of the radius. Since the inert gas has no velocity at the 
surface of the sphere, G, must be zero. This fact has been used in simplifying 
the collision terms. Equations (29a,  b )  are the mass diffusion equations, (30a, b)  
the energy conservation equations, and (31a,  b) the heat flux moment equations. 

The eight equations (28)-(31) can be solved for the eight functions. However, 
it is possible to make an assumption that leads to great simplification with, 
probably, little loss in detail. Let us assume that the two species have the same 
mean temperature at  any point, i.e. 

TA(r) = TB(r)7 (33a) 

or (tA+-xt,-) = (tB+-XtB-).  (33b)  

This is obviously valid in the continuum limit. In  the free molecule limit the 
temperatures are exactly equal when the accommodation coefkients are unity. 
We therefore expect (33a) to be a good assumption. It is possible now to drop 
one moment equation, the last one, (31 b ) .  In  so doing the dependence of the flow 
quantities on 2PBmlPB,ugm, the mean free path of the inert gas based on its 
partial density, will be lost. This dependence is however weak in the problem of 
evaporation and condensation, where diffusion and vapour kinetic control are 
the dominant factors. In  any case, we assume (33)  and drop the last moment 
equation, ( 3 1  b ) .  Now, F2 and G, are constants and the system of equations is 
readily integrated to give 

NA- = #Fl-*p2, tA- = Fz-pl, (34 a, b)  

NB- = - 3G2, tB- = (72, (34% 4 
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t A + =  r" [(I, - H3) Fl + 12F2 + 13Q2] + (Io - H2), ( 3 4 4  

Note that we have six constants of integration, F,, F2, G,, H,, H, and Io, The 
constant G, was set equal to zero earlier as it is proportional to the gas mass 
flux. In  setting TA = TB we lost another constant and also one of the temperature 
conditions at infinity. 

Now the boundary conditions at  infinity (10) imply that, for r -> 00; 

tA2 3 0, N A ~ +  0, NB2 --> 0. (35 u, b, c) 

The condition ( 1 2 )  on the inert gas implies that 

The boundary conditions (14) subject to the accommodation coefficient restric- 
tions (13) yield at  r = ro 

NA1 + *tAl = (' - am) (%42 + *tA2) + + %L), 

NA1 f @A1 = ( - aT) (NA2 + @A2) + aT(NL + #tL) .  

(37a) 

(376) 

The six constants can, now, be evaluated from the solutions (34) and the boundary 
conditions (35), (36) and (37). 

Our chief interest is in the vapour mass flux which is given to first order by 
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Some algebraic manipulations lead to the result, 

where 

4. Discussion 
The result (39) gives the dependence of the evaporation rate on the pressure 

difference ( p i  -pAm) and the temperature difference (5"'- Tm). Similar ex- 
pressions exist for the energy fluxes, which are proportional to F, and G2 re- 
spectively. We note that two dimensionless inverse Knudsen numbers RA and 
RA, enter the result. RA is the ratio of the droplet radius to the mean free path 
of the vapour in the absence of the inert gas; RAB is proportional to the ratio of 
the droplet radius to the diffusion coefficient divided by the sound speed in the 
vapour alone. Prom elementary kinetic theory, when the two species are of the 
same mass and size, the common mean free path 1 will be proportional to the 
ratio of the diffusion coeEcient divided by the sound speed. In  such a case onIy 
will RAB be inversely proportional to the mean free path. We shall now consider 
various limiting cases. 

The free molecule limit corresponds to  the case where the two Knudsen 
numbers tend to infinity or RA+O, RAB+O. The formula for the mass flux 

This is precisely the linearized form of the effusion based Hertz-Knudsen 
formula. In  the free molecule limit the inert gas cannot affect the transport of 
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the vapour. This would be true for 'very small' droplets irrespective of the 
ambient conditions. 

When no inert gas is present, we can set nBm = 0. Since this implies that 
RAB = 0, the result (39) for F' reduces to 

This is the kinetic controlled limit; diffusion is nonexistent and the mass flux 
depends on the Knudsen number of the vapour alone. This formula agrees with 
the result obtained earlier by the author (Shankar 1968). In  the continuum 
limit we note that the mass flux depends on the pressure difference alone. 

The other limiting case is when diffusion is rate controlling. This corresponds 
to: RAB % 1, RA, RA and the formula for Fl takes the form, 

The net evaporation rate in this limit is given by 

I n  the continuum limit when DAB/rOPA 4 1 the formula reduces t o  Maxwell's 
result modified by the hydrodynamic flow correction (1 + nAm/nBm). 

Now Fuchs' results (7) applies to the case when p,, = 0 or 1A4m = co. This 
result can be rewritten in the form, 

P I  - PA, 1 
F1(Fuchs) = 

[ 1 + 3 - & 1 ]  ' 

where we have set h = al, where 1 is the mean free path and a is a constant. It is 
clear that Fuchs' result is of the right form, but, since e,/e, is a complicated 
function of the mass ratios and the accommodation coefficients, detailed com- 
parison is not possible in general. The numerical calculations presented next 
show that for the cases considered. Fuchs' result is excellent with a set equal 
to zero. 

The theory developed here is strictly valid only for monatomic Maxwell 
molecules. However, the calculation should have a wider range of applicability, 
since (i) the intermolecular potential is of no importance in the free molecule 
limit, and (ii) in the continuum limit the form of the potential will affect only the 
gas properties. The restriction to monatomic gases is not a serious one, since 
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vibrational and rotational exchanges will be unimportant at  moderate tempera- 
tures. Bearing these remarks in mind, we present some calculations made for 
the practically useful case of water vapour-air mixtures at temperatures of 20 "C 
and 150 "C. The total pressure was assumed to be atmospheric in each case and 
the molecular mass ratio was taken to be 18/29 = 0.62. Then writing the vapour 
mass flux in the form, 

Figure 3 shows the variation of the coefficient Cl, of the pressure difference, 
with the droplet radius for the T, = 20 "C case. It is clear that Ma,xwell's result 

" 
10-3 1 0 - 2  10-1 1 10 1 0 2  

TO P 

FIGURE 3. The dependence of the coefficient C, of the pressure difference on the droplet 
radius. The calculations are for a water vapour-air mixture, T, = 20 "C, p~~ = 0, 
aT = a, = 1, DAB = 0.25 cm2/sec, p~~ = 9.7 x p / c m  see. -.-, Maxwell; -. . .-, 
Fuchs ; --, moment ca~culation. 

is valid for droplets greater than 2 p. Fuchs's formula shows excellent agreement 
with the present calculation when the unknown factor a is set equal to zero (we 
have taken the mean free path to be = 277DA,/pA). Droplets of radius 2 x 10-3,u 
are within 1 yo of the free molecule limit. 

Figures 4a,  b show the dependence of the coefficients C, and C, on the droplet 
radius and on the pressure ratio pAm/pm. The wide scope of the present calculation 
is clearly illustrated here: the free molecule limit, the continuum limit, the 
diffusion oontrol limit and the kinetic control limit are all obtained from one 
formula. Once again the Maxwell result is valid for yo > 4p, and Fuchs' result 
is excellent with CI. set equal to zero. One particularly interesting feature is the 
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FIGURE 4. (a )  The dependence of the coefficient C, on the droplet radius and the pressure 
ratio, p ~ ~ / p ~ .  The calculations are for a steam-air mixture. T, = 150' C, UT = am = 1, 
DAB = 0.361cma/sec,~~, = 1 . 5 4 ~  10-4gm/cmsec.--.-,Maxwell;--. ~ .- , Fuchs, u = 0; 
-, moment calculation. (6) The dependence of the coefficient C, on the droplet radius 
and the 1)ressure ratio p ~ ~ / p ~ .  The steam-air conditions are the same as for (a). 

0 
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considerable effect of a small quantity of inert gas. With just 2 "/b inert gas, 
diffusion becomes important for droplets greater than 0 . 5 , ~ .  However, in this 
case kinetic condensation is of equal importance for droplets of the order of 

The formulae obtained in this paper for the mass and energy fluxes can now 
be used to calculate the transient growth of small droplets by a quasi-steady 
analysis under a wide variety of conditions. We caution, however, that in view 
of all the approximations made in the analysis a quasi-steady calculation may 
give only a qualitative description of the actual transient problem. 

10-50,~. 
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